\section*{| CONTROL | $\mathbf{L}$ | $\mathbf{N}$ | $\mathbf{H}$ |
| :---: | :---: | :---: | :---: |}

IMPORTANT: The barcode is for use only on the CELL-DYN Ruby. Refer to the appropriate System Operator's Manual for proper use of CELL-DYN Calibrator and Control Products. IMPORTANT: Mixing and Handling

1. Remove a vial of the control from the refrigerator and warm to room temperature ( $18^{\circ}$ to $30^{\circ} \mathrm{C}$ ) for 15 minutes before use.
2. To mix: (Do NOT mix mechanically or vortex.)

For a video demonstration, visit www.corelaboratory.abbott and navigate to the Customer Portal $\rightarrow$ Technical Library $\rightarrow$ Other Reference Documents $\rightarrow$ Hematology Aids.
a. Hold the vial vertically and roll each vial between the palms of the hands for 15-20 seconds.

b. Continue to mix by holding the vial by the ends between the thumb and finger, rapidly inverting the vial 20 times end-over-end using a very quick turning motion of the wrist.

c. Analyze immediately after mixing. Subsequent analyses during this test period may be performed by inverting the vial 5 times prior to instrument analysis.
d. Steps a-c must be repeated upon removing the sample from the refrigerator for the entire open-vial time period regardless of the method of analysis (open tube, cap piercing, auto sample or manual sample).
3. Refer to the appropriate CELL-DYN System Operator's Manual for information about analyzing control specimens.
4. FOR AUTOMATED SAMPLING OR MANUAL CLOSED SAMPLING (CS):

- Refer to the appropriate CELL-DYN Operator's Manual. Remove the vial from the sample handler immediately after sampling.

FOR OPEN-VIAL SAMPLING:

- Aspirate a sample from the vial.
- Carefully wipe the vial rim and cap with a lint-free tissue.
- Replace the cap, ensuring it is on tight.

After sampling, return vial to refrigerator for maximum open-vial stability. If run in the open mode, wipe the threads of both vial and cap before replacing cap and returning to refrigerator.

|  |  | Exp. 2024-03-08 |  | 8 Consecutive Day Open-Vial Stability |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CONTROL $\mathbf{L}$ |  | CONTROL N |  | CONTROL H |  |
|  |  | OT L3359 |  | LOT N3359 |  | LOT H3359 |  |
| SYSTEM | PARAMETER | ASSAY VALUE | $\pm$ MEAN RANGE * | ASSAY VALUE | $\pm$ MEAN RANGE * | ASSAY VALUE | $\pm$ MEAN RANGE * |
| $\begin{aligned} & \text { CELL-DYN } 3700 \\ & \text { SYSTEM } \end{aligned}$ | WOC $10^{\circ} \mathrm{L}$ | N/A | N/A | N/A | N/A | N/A | N/A |
|  | WIC $10^{\circ} \mathrm{L}$ | N/A | N/A | N/A | N/A | N/A | N/A |
|  | WBC $10^{\circ} \mathrm{L}$ | N/A | N/A | N/A | N/A | N/A | N/A |
|  | NEU 109\% | N/A | N/A | N/A | N/A | N/A | N/A |
|  | NEU \% | N/A | N/A | N/A | N/A | N/A | N/A |
|  | LYM $10^{\circ} \mathrm{L}$ | N/A | N/A | N/A | N/A | N/A | N/A |
|  | LYM \% | N/A | N/A | N/A | N/A | N/A | N/A |
|  | MONO 10\%/L | N/A | N/A | N/A | N/A | N/A | N/A |
|  | MONO \% | N/A | N/A | N/A | N/A | N/A | N/A |
|  | EOS $10^{\circ} \mathrm{L}$ | N/A | N/A | N/A | N/A | N/A | N/A |
|  | EOS \% | N/A | N/A | N/A | N/A | N/A | N/A |
|  | BASO $10^{\circ} \mathrm{L}$ | N/A | N/A | N/A | N/A | N/A | N/A |
|  | BASO \% | N/A | N/A | N/A | N/A | N/A | N/A |
|  | RBC $10^{12} / \mathrm{L}$ | N/A | N/A | N/A | N/A | N/A | N/A |
|  | HGB g/dL | N/A | N/A | N/A | N/A | N/A | N/A |
|  | HCT \% | N/A | N/A | N/A | N/A | N/A | N/A |
|  | MCV fl | N/A | N/A | N/A | N/A | N/A | N/A |
|  | MCH pg | N/A | N/A | N/A | N/A | N/A | N/A |
|  | MCHC g/dL | N/A | N/A | N/A | N/A | N/A | N/A |
|  | RDW \% | N/A | N/A | N/A | N/A | N/A | N/A |
|  | PLT 10\%/L | N/A | N/A | N/A | N/A | N/A | N/A |
|  | MPV fL | N/A | N/A | N/A | N/A | N/A | N/A |
| CELL-DYN Ruby SYSTEM | WBC (WOC) $10^{\circ} \mathrm{L}$ | 4.1 | 0.4 | 7.2 | 0.7 | 16.6 | 2.5 |
|  | WBC ( NOC$) 10^{\circ} \mathrm{L}$ | 4.2 | 0.4 | 7.3 | 1.0 | 16.6 | 2.5 |
|  | NEU $10 \%$ | 2.3 | 0.3 | 4.0 | 0.8 | 9.3 | 2.0 |
|  | NEU \% | 55.7 | 8.0 | 56.2 | 8.0 | 56.1 | 10.0 |
|  | LYM 109\% | 1.2 | 0.3 | 2.1 | 0.8 | 4.9 | 2.0 |
|  | LYM \% | 29.0 | 9.0 | 29.1 | 9.0 | 29.2 | 10.0 |
|  | MONO $10 \%$ L | 0.4 | 0.2 | 0.6 | 0.4 | 1.5 | 0.6 |
|  | MONO \% | 9.4 | 5.0 | 9.1 | 5.0 | 9.0 | 3.0 |
|  | EOS $10^{\circ} \mathrm{LL}$ | 0.1 | 0.1 | 0.2 | 0.2 | 0.4 | 0.2 |
|  | EOS \% | 3.0 | 3.0 | 2.3 | 2.0 | 2.3 | 1.0 |
|  | BASO $10^{\circ} \mathrm{L}$ | 0.1 | 0.1 | 0.2 | 0.2 | 0.6 | 0.6 |
|  | BASO \% | 3.6 | 3.0 | 3.4 | 3.0 | 3.3 | 3.0 |
|  | RBC 10 $0^{\prime 2}$ /L | 2.92 | 0.15 | 4.23 | 0.20 | 5.25 | 0.30 |
|  | HGB g/dL | 7.4 | 0.4 | 11.4 | 0.6 | 15.4 | 0.8 |
|  | HCT \% | 20.6 | 1.5 | 30.9 | 2.5 | 40.5 | 3.5 |
|  | MCV fL | 70.7 | 4.0 | 73.2 | 4.0 | 77.1 | 5.0 |
|  | MCH pg | 25.2 | 2.0 | 27.0 | 2.0 | 29.4 | 2.0 |
|  | MCHC g/dL | 35.7 | 2.3 | 36.9 | 3.0 | 38.1 | 2.3 |
|  | RDW \% | 13.8 | 2.5 | 12.1 | 2.5 | 11.0 | 2.5 |
|  | PLT 10\%/L | 74 | 20 | 216 | 30 | 526 | 60 |
|  | MPV fL | 10.1 | 3.0 | 9.7 | 3.0 | 9.7 | 3.0 |

The MEAN RANGE does not represent standard deviations (SD).
NOTE: Flags may occur with control materials and should be disregarded.

## C

CELL-DYN and CELL-DYN Ruby are trademarks of Abbott Laboratories in various jurisdictions.

Abbott Laboratories Diagnostics Division Abbott Park, IL 60064

EC|REP Abbott GmbH \& Co. KG Max-Planck-Ring 2 65205 Wiesbaden Germany
$+49-6122-580$

MANUFACTURED FOR Abbott Laboratories

## Abbott

REF 08H59-01, 08H59-02

