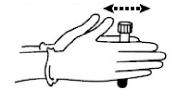
CELL-DYN 26 Plus Control



IMPORTANT: The barcode is for use only on the CELL-DYN Ruby. Refer to the appropriate System Operator's Manual for proper use of CELL-DYN Calibrator and Control Products. IMPORTANT: Mixing and Handling

- 1. Remove a vial of the control from the refrigerator and warm to room temperature (18° to 30° C) for 15 minutes before use.
- 2. To mix: (Do NOT mix mechanically or vortex.)

For a video demonstration, visit www.corelaboratory.abbott and navigate to the Customer Portal → Technical Library → Other Reference Documents → Hematology Aids.

a. Hold the vial vertically and roll each vial between the palms of the hands for 15-20 seconds.

b. Continue to mix by holding the vial by the ends between the thumb and finger, rapidly inverting the vial 20 times end-over-end using a very quick turning motion of the wrist.

- c. Analyze immediately after mixing. Subsequent analyses during this test period may be performed by inverting the vial 5 times prior to instrument analysis.
- d. Steps a-c must be repeated upon removing the sample from the refrigerator for the entire open-vial time period regardless of the method of analysis (open tube, cap piercing, auto sample or manual sample).
- 3. Refer to the appropriate CELL-DYN System Operator's Manual for information about analyzing control specimens.
- 4. FOR AUTOMATED SAMPLING OR MANUAL CLOSED SAMPLING (CS):
 - Refer to the appropriate CELL-DYN Operator's Manual. Remove the vial from the sample handler immediately after sampling.

FOR OPEN-VIAL SAMPLING:

- Aspirate a sample from the vial.
- Carefully wipe the vial rim and cap with a lint-free tissue.
- Replace the cap, ensuring it is on tight.

After sampling, return vial to refrigerator for maximum open-vial stability. If run in the open mode, wipe the threads of both vial and cap before replacing cap and returning to refrigerator.

CELL-DYN 26 Plus Control

Exp. 2024-05-31 8 Consecutive Day Open-Vial Stability CONTROL L CONTROL N CONTROL H LOT L4078 LOT N4078 LOT H4078 SYSTEM **ASSAY VALUE** ± MEAN RANGE * **ASSAY VALUE** ± MEAN RANGE * **ASSAY VALUE** ± MEAN RANGE * PARAMETER N/A N/A N/A WOC 109/L N/A N/A WIC 109/L N/A N/A N/A N/A N/A N/A WBC 109/L N/A N/A N/A N/A N/A N/A NEU 109/L NEU % N/A N/A N/A N/A N/A N/A LYM 109/L N/A N/A N/A N/A N/A N/A LYM % N/A N/A N/A N/A N/A N/A MONO 109/L N/A N/A N/A N/A N/A N/A EOS 109/L N/A N/A N/A N/A N/A N/A CELL-DYN 3700 EOS % N/A N/A N/A N/A N/A N/A SYSTEM BASO 109/L N/A N/A N/A N/A N/A N/A BASO % N/A N/A N/A N/A N/A N/A HGB g/dL N/A N/A N/A N/A N/A N/A HCT % N/A N/A N/A N/A N/A N/A MCV fL N/A N/A N/A N/A N/A N/A MCH pg N/A N/A N/A N/A N/A N/A MCHC g/dL RDW % N/A N/A N/A N/A N/A N/A PLT 10°/L N/A N/A N/A N/A N/A N/A MPV fL N/A N/A N/A N/A N/A N/A WBC (WOC) 10°/L 4.0 0.4 6.8 0.7 15.5 2.5 WBC (NOC) 109/L 4.1 0.4 7.0 1.0 15.8 2.5 0.3 3.8 0.8 NEU 109/L 2.3 8.8 2.0 NEU % 56.5 8.0 56.3 8.0 56.8 10.0 LYM 109/L 1.1 0.3 1.9 0.8 4.3 2.0 LYM % 27.7 9.0 28.2 9.0 10.0 27.9 MONO 109/L 0.4 0.2 0.6 0.4 1.5 0.6 9.6 5.0 5.0 9.4 MONO % 9.5 3.0 EOS 109/L 0.1 0.1 0.2 0.2 0.4 0.2 **CELL-DYN Ruby** 3.0 3.0 2.5 2.0 2.5 1.0 BASO 109/L 0.1 0.1 0.2 0.6 0.2 0.6 SYSTEM 3.0 3.7 3.0 3.5 3.5 3.0 BASO % RBC 1012/L 2.89 0.15 0.20 5.30 0.30 4.26 HGB g/dL 6.9 0.4 11.8 0.6 16.0 8.0 HCT % 19.8 1.5 32.3 2.5 42.4 3.5 MCV fL 68.6 4.0 76.0 4.0 80.1 5.0 23.8 2.0 27.6 2.0 30.2 2.0 MCH pg 2.3 3.0 37.6 MCHC g/dL 34.7 36.4 2.3 2.5 2.5 2.5 RDW % 13.8 12.0 11.1 PLT 109/L 76 20 225 30 535 60 9.7 3.0 9.5 3.0 9.5 3.0

CELL-DYN and CELL-DYN Ruby are trademarks of Abbott Laboratories in various jurisdictions.

Abbott Laboratories Diagnostics Division Abbott Park, IL 60064

EC REP Abbott GmbH & Co. KG Max-Planck-Ring 2 65205 Wiesbaden Germany +49-6122-580

MANUFACTURED FOR Abbott Laboratories

The **MEAN RANGE** does not represent standard deviations (SD). NOTE: Flags may occur with control materials and should be disregarded.